OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..400
M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
FORMULA
For n>=2, T_2(n) = Sum_{m=1..n} Sum_{l=0..m} C(m,l)*C(l+1,2)*(-1)^(m-l)*l^(n-2).
G.f.: 1/G(0) -1 where G(k) = 1 - x*(k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: 1/Q(0) -1, where Q(k) = 1 - x*(3*k+2) - 2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n) = Sum_{k=1..n-1} Stirling2(n-1,k)*(k+1)!. - Karol A. Penson, Sep 04 2015
a(n) ~ n! / (4 * log(2)^(n+1)). - Vaclav Kotesovec, Apr 15 2022
MATHEMATICA
f[r_, n_]:= Sum[Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l, m}], {m, n}]; Join[{0}, Table[f[2, n], {n, 2, 30}]]
PROG
(Magma) [(&+[Factorial(j+1)*StirlingSecond(n-1, j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Apr 14 2022
(SageMath) [sum( factorial(j+1)*stirling_number2(n-1, j) for j in (1..n-1) ) for n in (1..30)] # G. C. Greubel, Apr 14 2022
(PARI) a(n) = sum(k=1, n-1, stirling(n-1, k, 2)*(k+1)!); \\ Michel Marcus, Apr 14 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Griffiths, Jan 25 2010
STATUS
approved