OFFSET
1,5
COMMENTS
T_3(1, m) = T_3(2, m) = 0 by definition. T_3(n, m) also gives the number of ordered partitions of {1, 1, 1, 2, 3, ..., n-2} into exactly m parts.
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
FORMULA
T_3(n, m) = Sum_{j=0..m} binomial(m, j)*binomial(j+2, 3)*(-1)^(m-j)*j^(n-3), for n >= 3, with T(1, 1) = T(2, 1) = T(2, 2) = 0.
Sum_{k=1..n} T_3(n, k) = A172110(n).
Sum_{k=1..n} (-1)^k*T_3(n, k) = 0. - G. C. Greubel, Apr 14 2022
EXAMPLE
Triangle begins as:
0;
0, 0;
1, 2, 1;
1, 6, 9, 4;
1, 14, 45, 52, 20;
1, 30, 177, 388, 360, 120;
1, 62, 621, 2260, 3740, 2880, 840;
1, 126, 2049, 11524, 30000, 39720, 26040, 6720;
1, 254, 6525, 54292, 207620, 418320, 460320, 262080, 60480;
1, 510, 20337, 243268, 1309560, 3755640, 6150480, 5779200, 2903040, 604800;
MATHEMATICA
f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l, m}]; For[n = 3, n <= 10, n++, Print[Table[f[3, n, m], {m, 1, n}]]]
PROG
(Magma)
T:= func< n, k, m | n lt 3 select 0 else (&+[(-1)^(k+j)*Binomial(k, j)*Binomial(j+m-1, m)*j^(n-m): j in [1..k]]) >;
[T(n, k, 3): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 14 2022
(SageMath)
def T(n, k, m):
if (n<3): return 0
else: return sum( (-1)^(k-j)*binomial(k, j)*binomial(j+m-1, m)*j^(n-m) for j in (1..k) )
flatten([[T(n, k, 3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 14 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Martin Griffiths, Jan 25 2010
STATUS
approved