%I #20 Apr 25 2024 09:17:24
%S 1,1,1,1,2,1,1,1,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,
%T 1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,
%U 0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1
%N Triangle T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2, read by rows.
%H G. C. Greubel, <a href="/A172090/b172090.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2.
%F From _G. C. Greubel_, Apr 29 2021: (Start)
%F T(n, k) is defined by T(n, 0) = T(n, 1) = T(n, n-1) = T(n, n) = T(3, k) = 1, T(2, 1) = 2 and 0 otherwise.
%F Sum_{k=0..n} T(n,k) = A151798(n). (End)
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 1, 1, 1;
%e 1, 1, 0, 1, 1;
%e 1, 1, 0, 0, 1, 1;
%e 1, 1, 0, 0, 0, 1, 1;
%e 1, 1, 0, 0, 0, 0, 1, 1;
%e 1, 1, 0, 0, 0, 0, 0, 1, 1;
%e 1, 1, 0, 0, 0, 0, 0, 0, 1, 1;
%e 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1;
%t (* First program *)
%t f[n_]:= f[n]= If[n < 2, (-1)^n*(n+1), -3*n];
%t T[n_, k_]:= f[n-k] +f[k] -f[n];
%t Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Apr 29 2021 *)
%t (* Second program *)
%t T[n_, k_]:= If[n<3, Binomial[n, k], If[n==3 || k<2 || k>n-2, 1, 0]];
%t Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 29 2021 *)
%o (Sage)
%o def f(n): return (-1)^n*(n+1) if (n<2) else -3*n
%o def T(n,k): return f(n-k) + f(k) - f(n)
%o flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Apr 29 2021
%Y Row sums are A151798.
%K nonn,tabl,easy,less
%O 0,5
%A _Roger L. Bagula_, Jan 25 2010
%E Edited by _G. C. Greubel_, Apr 29 2021