login
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=5.
12

%I #30 Sep 08 2022 08:45:50

%S 1,6,29,128,541,2232,9076,36568,146446,584082,2322967,9220544,

%T 36548573,144732176,572756312,2265577184,8959034798,35421613196,

%U 140035644602,553606049024,2188652065586,8653317051056,34216118389384

%N Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=5.

%C This sequence is the 5th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

%C Apparently the number of peaks in all Dyck paths of semilength n+5 that are 3 steps higher than the preceding peak. - _David Scambler_, Apr 22 2013

%C Apparently half the sum of all height differences between adjacent peaks in all Dyck paths of semilength n+3. - _David Scambler_, Apr 22 2013

%H Vincenzo Librandi, <a href="/A172062/b172062.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{j=0..n} (-1)^j*binomial(2*n+k-j, n-j), with k=5.

%F a(n) ~ 2^(2*n+6)/(3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Apr 19 2014

%F Conjecture: 2*n*(n+5)*(3*n+7)*a(n) - (n+3)*(21*n^2+79*n+80)*a(n-1) - 2*(3*n+10)*(2*n+3)*(n+2)*a(n-2) = 0. - _R. J. Mathar_, Feb 19 2016

%e a(4) = C(13,4) - C(12,3) + C(11,2) - C(10,1) + C(9,0) = 13*11*5 - 20*11 + 55 - 10 + 1 = 541.

%p for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;

%p # 2nd program

%p for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;

%t CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^5, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 19 2014 *)

%o (PARI) k=5; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ _G. C. Greubel_, Feb 17 2019

%o (Magma) k:=5; m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // _G. C. Greubel_, Feb 17 2019

%o (Sage) k=5; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 17 2019

%Y Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).

%K easy,nonn

%O 0,2

%A _Richard Choulet_, Jan 24 2010