The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172060 The number of returns to the origin in all possible one-dimensional walks of length 2n. 2
 0, 2, 14, 76, 374, 1748, 7916, 35096, 153254, 661636, 2831300, 12030632, 50826684, 213707336, 894945944, 3734901296, 15540685574, 64496348516, 267060529364, 1103587381256, 4552196053844, 18747042089816, 77092267322984, 316602500019536, 1298657603761244 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/4^n is the expected number of times a gambler will return to his break-even point while making 2n equal wagers on the outcome of a fair coin toss. Note the surprisingly low and slow growth of this expectation. REFERENCES W. Feller, An Introduction to Probability Theory and its Applications, Vol 1, 3rd ed. New York: Wiley, pp. 67-97, 1968. LINKS M. Bona, Non-overlapping permutation patterns, PU. M. A. Vol. 22 (2012), 99-105. - N. J. A. Sloane, Oct 13 2012 FORMULA a(n) = (2n+1)!/(n!)^2 - 4^n. a(n) = 4*a(n-1) + binomial(2n,n). O.g.f.: (1-(1-4x)^(1/2))/(1-4x)^(3/2). a(n) = A002457(n) - A000302(n). - Wesley Ivan Hurt, Mar 24 2015 a(n) = 2*A000531(n). - R. J. Mathar, Jan 03 2018 EXAMPLE a(2) = 14 because there are fourteen 0's in the set of all possible walks of length 4: {{-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, -1, 0}, {-1, 0, 1, 0}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, -1, 0}, {1, 0, 1, 0}, {1, 0, 1, 2}, {1, 2, 1, 0}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}}. MAPLE A172060:=n->(2*n+1)!/(n!)^2 - 4^n: seq(A172060(n), n=0..30); # Wesley Ivan Hurt, Mar 24 2015 MATHEMATICA Table[Count[Flatten[Map[Accumulate, Strings[{-1, 1}, n]]], 0], {n, 0, 20, 2}] CoefficientList[Series[(1 - (1 - 4 x)^(1/2)) / (1 - 4 x)^(3/2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 25 2015 *) PROG (Magma) [Factorial(2*n+1)/Factorial(n)^2 - 4^n : n in [0..30]]; // Wesley Ivan Hurt, Mar 24 2015 (Magma) [0] cat [n le 1 select 2 else 4*Self(n-1)+ Binomial(2*n, n): n in [1..30]]; // Vincenzo Librandi, Mar 25 2015 CROSSREFS Sequence in context: A304049 A197874 A104871 * A277297 A185055 A034573 Adjacent sequences: A172057 A172058 A172059 * A172061 A172062 A172063 KEYWORD nonn,easy AUTHOR Geoffrey Critzer, Jan 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 12:20 EST 2022. Contains 358416 sequences. (Running on oeis4.)