login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172054 n-th number k such that 6*k-1 is composite while 6*k+1 is prime minus n-th number m such that 6*m-1 is prime while 6*m+1 is composite. 2
2, 3, 4, 2, 6, 7, 5, 7, 8, 7, 9, 12, 12, 12, 9, 4, 6, 4, 8, 9, 7, 8, 12, 11, 14, 17, 17, 12, 18, 17, 19, 13, 13, 10, 11, 9, 8, 7, 15, 17, 18, 13, 12, 13, 13, 11, 11, 15, 19, 19, 23, 23, 19, 12, 16, 17, 12, 11, 18, 22, 27, 29, 27, 27, 25, 18, 27, 28, 23, 22, 23, 17, 21, 24, 23, 23, 30 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Are there negative terms?

The entries are positive for at least the first 250000 terms. - R. J. Mathar, May 22 2010

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..20000

FORMULA

a(n) = A121765(n) - A121763(n).

EXAMPLE

The number 6 is the first integer k such that 6*k-1 is composite while 6*k+1 is prime, the number 4 is the first integer m such that 6*m -1 is prime while 6*m+1 is composite, so, 2 = 6 - 4 is the first term a(1) of this sequence. - Bernard Schott, Feb 18 2019

MAPLE

A121765 := proc(n) option remember; if n = 1 then 6; else for a from procname(n-1)+1 do if 6*a-1 >=4 and not isprime(6*a-1) and isprime(6*a+1) then return a; end if; end do; end if; end proc:

A121763 := proc(n) option remember; if n = 1 then 4; else for a from procname(n-1)+1 do if 6*a+1 >=4 and not isprime(6*a+1) and isprime(6*a-1) then return a; end if; end do; end if; end proc:

A172054 := proc(n) A121765(n)-A121763(n) ; end proc:

seq(A172054(n), n=1..120) ; # R. J. Mathar, May 22 2010

MATHEMATICA

A121765:= Select[Range[350], !PrimeQ[6#-1] && PrimeQ[6#+1] &];

A121763:= Select[Range[350], PrimeQ[6#-1] && !PrimeQ[6#+1] &];

Table[A121765[[n]] - A121763[[n]], {n, 1, 80}] (* G. C. Greubel, Feb 20 2019 *)

PROG

(GAP) L:=500;;

K:=Filtered([1..L], k-> not IsPrime(6*k-1) and IsPrime(6*k+1));;

M:=Filtered([1..L], m-> not IsPrime(6*m+1) and IsPrime(6*m-1));;

a:=List([1..Length(K)], i->K[i]-M[i]);; Print(a); # Muniru A Asiru, Feb 19 2019

(MAGMA)

A121765:=[n: n in [1..350] | not IsPrime(6*n-1) and  IsPrime(6*n+1)];

A121763:=[n: n in [1..350] | IsPrime(6*n-1) and not IsPrime(6*n+1)];

[A121765[n] - A121763[n]: n in [1..80]]; // G. C. Greubel, Feb 20 2019

(Sage)

A121765=[n for n in (1..350) if not is_prime(6*n-1) and is_prime(6*n+1)];

A121763=[n for n in (1..350) if is_prime(6*n-1) and not is_prime(6*n+1)];

[A121765[n] - A121763[n] for n in (0..80)] # G. C. Greubel, Feb 20 2019

CROSSREFS

Cf. A121763, A171765.

Sequence in context: A278963 A308085 A178970 * A047994 A193024 A153038

Adjacent sequences:  A172051 A172052 A172053 * A172055 A172056 A172057

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov, Jan 24 2010

EXTENSIONS

Entries checked by R. J. Mathar, May 22 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)