login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172051 Decimal expansion of 1/999999. 3
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Period 6: repeat [0, 0, 0, 0, 0, 1].

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).

FORMULA

a(n) = (1-((-1)^A172050(n+4)))/2. A similar formula is given by Hieronymus Fischer in A022003.

a(n) = 1 if (n+1) mod 6 = 0 else 0.

a(n) = A079979(n+1). [R. J. Mathar, Jan 28 2010]

a(n) = (n-2)*(Fibonacci(n-2)-1) mod 2. [Gary Detlefs, Dec 29 2010]

a(n) = n mod (1 + (n-1) mod 3). - Wesley Ivan Hurt, Aug 16 2014

G.f.: x^5/(1-x^6). - Vaclav Kotesovec, Aug 18 2014

a(n) = binomial((5*n+10) mod 6, 5). - Wesley Ivan Hurt, Aug 29 2014

a(n) = 1 - sign((n+1) mod 6). - Wesley Ivan Hurt, Aug 29 2014

a(n) = A245477(n) - 1. - Wesley Ivan Hurt, Aug 29 2014

From Wesley Ivan Hurt, Jun 23 2016: (Start)

a(n) = a(n-6) for n>5.

a(n) = (3 - 3*cos(n*Pi) + 6*cos(n*Pi/3) + 6*cos((n-4)*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3) - 2*sqrt(3)*sin((1+2*n)*Pi/3))/18. (End)

MAPLE

A172051:=n->(n mod (1+((n-1) mod 3))): seq(A172051(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2014

MATHEMATICA

Join[{0, 0, 0, 0, 0}, RealDigits[1/999999, 10, 120][[1]]] (* or *) PadRight[ {}, 120, {0, 0, 0, 0, 0, 1}] (* Harvey P. Dale, Oct 24 2013 *)

PROG

(MAGMA) [n mod (1 + ((n-1) mod 3)) : n in [0..100]]; // Wesley Ivan Hurt, Aug 29 2014

CROSSREFS

Cf. A022003, A172050, A245477.

Sequence in context: A025458 A286925 A179527 * A093958 A044936 A133944

Adjacent sequences:  A172048 A172049 A172050 * A172052 A172053 A172054

KEYWORD

nonn,cons,easy

AUTHOR

Mats Granvik, Jan 24 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 00:47 EDT 2019. Contains 324223 sequences. (Running on oeis4.)