login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172012 Expansion of (2-3*x)/(1-3*x-3*x^2) . 0
2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.

The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.

LINKS

Table of n, a(n) for n=0..25.

Wikipedia, Lucas sequence: Specific names.

Index entries for linear recurrences with constant coefficients, signature (3,3).

FORMULA

a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).

L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).

a(0)=2, a(1)=3, a(n) = 3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]

a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 21*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

MATHEMATICA

CoefficientList[Series[(2-3x)/(1-3x-3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 3}, {2, 3}, 31] (* Harvey P. Dale, Aug 24 2011 *)

CROSSREFS

Sequence in context: A203432 A151369 A143885 * A047014 A027519 A245107

Adjacent sequences:  A172009 A172010 A172011 * A172013 A172014 A172015

KEYWORD

nonn,easy

AUTHOR

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

EXTENSIONS

Edited and extended by R. J. Mathar, Jan 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 06:55 EST 2016. Contains 279043 sequences.