login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172012 Expansion of (2-3*x)/(1-3*x-3*x^2) . 0
2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.

The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.

LINKS

Table of n, a(n) for n=0..25.

Wikipedia, Lucas sequence: Specific names.

Index entries for sequences related to linear recurrences with constant coefficients, signature (3,3).

FORMULA

a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).

L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).

a(0)=2, a(1)=3, a(n)=3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]

MATHEMATICA

CoefficientList[Series[(2-3x)/(1-3x-3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 3}, {2, 3}, 31] (* Harvey P. Dale, Aug 24 2011 *)

CROSSREFS

Sequence in context: A203432 A151369 A143885 * A047014 A027519 A245107

Adjacent sequences:  A172009 A172010 A172011 * A172013 A172014 A172015

KEYWORD

nonn,easy

AUTHOR

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

EXTENSIONS

Edited and extended by R. J. Mathar, Jan 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 22 04:01 EDT 2014. Contains 248388 sequences.