login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172012 Expansion of (2-3*x)/(1-3*x-3*x^2) . 0
2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.

The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.

LINKS

Table of n, a(n) for n=0..25.

Wikipedia, Lucas sequence: Specific names.

Index entries for linear recurrences with constant coefficients, signature (3,3).

FORMULA

a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).

L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).

a(0)=2, a(1)=3, a(n) = 3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]

a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 21*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

MATHEMATICA

CoefficientList[Series[(2-3x)/(1-3x-3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 3}, {2, 3}, 31] (* Harvey P. Dale, Aug 24 2011 *)

CROSSREFS

Sequence in context: A203432 A151369 A143885 * A047014 A027519 A245107

Adjacent sequences:  A172009 A172010 A172011 * A172013 A172014 A172015

KEYWORD

nonn,easy

AUTHOR

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

EXTENSIONS

Edited and extended by R. J. Mathar, Jan 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 10:37 EDT 2015. Contains 261188 sequences.