login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172012 Expansion of (2-3*x)/(1-3*x-3*x^2) . 0
2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.

The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.

LINKS

Table of n, a(n) for n=0..25.

Wikipedia, Lucas sequence: Specific names.

Index entries for sequences related to linear recurrences with constant coefficients, signature (3,3).

FORMULA

a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).

L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).

a(0)=2, a(1)=3, a(n)=3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]

MATHEMATICA

CoefficientList[Series[(2-3x)/(1-3x-3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 3}, {2, 3}, 31] (* Harvey P. Dale, Aug 24 2011 *)

CROSSREFS

Sequence in context: A203432 A151369 A143885 * A047014 A027519 A245107

Adjacent sequences:  A172009 A172010 A172011 * A172013 A172014 A172015

KEYWORD

nonn,easy

AUTHOR

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

EXTENSIONS

Edited and extended by R. J. Mathar, Jan 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 10:53 EST 2014. Contains 250323 sequences.