|
|
A171979
|
|
Number of partitions of n such that smaller parts do not occur more frequently than greater parts.
|
|
4
|
|
|
1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 19, 21, 30, 31, 42, 50, 62, 69, 91, 99, 126, 144, 175, 198, 246, 275, 331, 379, 452, 509, 612, 686, 811, 922, 1076, 1219, 1428, 1604, 1863, 2108, 2434, 2739, 3162, 3551, 4075, 4593, 5240, 5885, 6721, 7527, 8556, 9597, 10870
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A000009(n) <= a(n) <= A000041(n).
Equivalently, the number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the maximal part), as in the Mathematica program. - Clark Kimberling, Apr 04 2014
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for sequences related to partitions
|
|
FORMULA
|
a(n) = p(n,0,1,1) with p(n,i,j,k) = if k<=n then p(n-k,i,j+1,k) +p(n,max(i,j),1,k+1) else (if j<i or n>0 then 0 else 1).
a(n) + A240302(n) = A000041(n). - Clark Kimberling, Apr 04 2014.
|
|
EXAMPLE
|
a(5) = #{5, 4+1, 3+2, 2+2+1, 5x1} = 5;
a(6) = #{6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 6x1} = 8;
a(7) = #{7, 6+1, 5+2, 4+3, 4+2+1, 3+3+1, 2+2+2+1, 7x1} = 8;
a(8) = #{8, 7+1, 6+2, 5+3, 5+2+1, 4+4, 4+3+1, 3+3+2, 3+3+1+1, 2+2+2+2, 2+2+2+1+1, 8x1} = 12.
|
|
MATHEMATICA
|
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
Table[Count[f[n], p_ /; m[p] == Count[p, Max[p]]], {n, 0, z}] (* A171979 *)
Table[Count[f[n], p_ /; m[p] > Count[p, Max[p]]], {n, 0, z}] (* A240302 *)
(* Clark Kimberling, Apr 04 2014 *)
|
|
CROSSREFS
|
Cf. A240302.
Sequence in context: A316496 A332339 A100882 * A181694 A297166 A297163
Adjacent sequences: A171976 A171977 A171978 * A171980 A171981 A171982
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Jan 20 2010
|
|
STATUS
|
approved
|
|
|
|