This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171966 Number of partitions of n having not more odd than even parts. 12
 1, 0, 1, 1, 2, 3, 4, 6, 8, 12, 15, 21, 28, 37, 49, 63, 83, 105, 138, 171, 223, 275, 353, 433, 551, 673, 846, 1031, 1282, 1558, 1922, 2327, 2848, 3440, 4179, 5032, 6078, 7293, 8763, 10482, 12534, 14943, 17797, 21146, 25090, 29719, 35138, 41493, 48908, 57578 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) = A108949(n) + A045931(n) = A000041(n) - A108950(n). a(n) = Sum_{k=-floor(n/2)+(n mod 2)..0} A240009(n,k). - Alois P. Heinz, Mar 30 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 MAPLE b:= proc(n, i, t) option remember; `if`(n=0,       `if`(t<=0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+       `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..80);  # Alois P. Heinz, Mar 30 2014 MATHEMATICA \$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t <= 0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *) CROSSREFS Cf. A130780, A171967. Sequence in context: A178751 A081029 A300787 * A034893 A187448 A321266 Adjacent sequences:  A171963 A171964 A171965 * A171967 A171968 A171969 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jan 21 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:41 EST 2018. Contains 318023 sequences. (Running on oeis4.)