login
A171917
Van Eck sequence (cf. A181391) starting with a(1) = 7.
2
7, 0, 0, 1, 0, 2, 0, 2, 2, 1, 6, 0, 5, 0, 2, 6, 5, 4, 0, 5, 3, 0, 3, 2, 9, 0, 4, 9, 3, 6, 14, 0, 6, 3, 5, 15, 0, 5, 3, 5, 2, 17, 0, 6, 11, 0, 3, 8, 0, 3, 3, 1, 42, 0, 5, 15, 20, 0, 4, 32, 0, 3, 11, 18, 0, 4, 7, 66, 0, 4, 4, 1, 20, 16, 0, 6, 32, 17, 36, 0, 5, 26, 0, 3, 22, 0, 3, 3, 1, 17
OFFSET
1,1
COMMENTS
A van Eck sequence is defined recursively by a(n+1) = min { k > 0 | a(n-k) = a(n) } or 0 if this set is empty. - M. F. Hasler, Jun 15 2019
FORMULA
a(n+1) = A181391(n) until the first occurrence of a(1) = 7 in A181391. - M. F. Hasler, Jun 15 2019
PROG
(PARI) A171917_vec(N, a=7, i=Map())={vector(N, n, a=if(n>1, iferr(n-mapget(i, a), E, 0)+mapput(i, a, n), a))} \\ M. F. Hasler, Jun 15 2019
(Python)
from itertools import count, islice
def A171917gen(): # generator of terms
b, bdict = 7, {7:(1, )}
for n in count(2):
yield b
if len(l := bdict[b]) > 1:
b = n-1-l[-2]
else:
b = 0
if b in bdict:
bdict[b] = (bdict[b][-1], n)
else:
bdict[b] = (n, )
A171917_list = list(islice(A171917gen(), 20)) # Chai Wah Wu, Dec 21 2021
CROSSREFS
Cf. A181391, A171911, ..., A171918 (same but starting with 0, 1, ..., 8).
Sequence in context: A135435 A339442 A331748 * A198919 A019933 A067840
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 22 2010
EXTENSIONS
Name edited and cross-references added by M. F. Hasler, Jun 15 2019
STATUS
approved