login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171835 Partial sums of numbers congruent to {3, 4, 5, 6} mod 8 (A047425). 1
3, 7, 12, 18, 29, 41, 54, 68, 87, 107, 128, 150, 177, 205, 234, 264, 299, 335, 372, 410, 453, 497, 542, 588, 639, 691, 744, 798, 857, 917, 978, 1040, 1107, 1175, 1244, 1314, 1389, 1465, 1542, 1620, 1703, 1787, 1872, 1958, 2049, 2141, 2234, 2328, 2427, 2527 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).

FORMULA

a(n) = Sum_{i=1..n} A047425(i).

From Wesley Ivan Hurt, Jun 04 2016: (Start)

G.f.: x*(3+x+x^2+x^3+2*x^4)/((1-x)^3*(1+x+x^2+x^3)).

a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6.

a(n) = (4*n^2+2*n+5-2*I^(-n)-2*I^n-I^(2*n))/4 where I=sqrt(-1). (End)

MAPLE

A171835:=n->(4*n^2+2*n+5-2*I^(-n)-2*I^n-I^(2*n))/4: seq(A171835(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016

MATHEMATICA

CoefficientList[Series[(3 + x + x^2 + x^3 + 2*x^4)/((1 - x)^3*(1 + x + x^2 + x^3)), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jun 04 2016 *)

Table[(4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4, {n, 1, 100}] (* G. C. Greubel, Sep 04 2018 *)

PROG

(PARI) vector(100, n, (4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4) \\ G. C. Greubel, Sep 04 2018

(MAGMA) C<I> := ComplexField(); [Round((4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4): n in [1..100]]; // G. C. Greubel, Sep 04 2018

CROSSREFS

Cf. A047425.

Sequence in context: A109638 A008332 A065390 * A324125 A212293 A194102

Adjacent sequences:  A171832 A171833 A171834 * A171836 A171837 A171838

KEYWORD

nonn,easy

AUTHOR

Jaroslav Krizek, Dec 19 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 16:14 EDT 2019. Contains 325258 sequences. (Running on oeis4.)