login
A171834
Partial sums of numbers congruent to {0, 1, 2, 7} mod 8 (A047527).
1
1, 3, 10, 18, 27, 37, 52, 68, 85, 103, 126, 150, 175, 201, 232, 264, 297, 331, 370, 410, 451, 493, 540, 588, 637, 687, 742, 798, 855, 913, 976, 1040, 1105, 1171, 1242, 1314, 1387, 1461, 1540, 1620, 1701, 1783, 1870, 1958, 2047, 2137, 2232, 2328, 2425, 2523
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} A047527(i).
From G. C. Greubel, Sep 04 2018: (Start)
a(n) = (4*n^2 + 2*n - 3 + 2*(1 + (-1)^n)*I^n - (-1)^n)/4, where I = sqrt(-1).
G.f.: x*(1+x+5*x^2+x^3)/((1-x)^2*(1-x^4)).
E.g.f.: (2*cos(x) +(2*x^2 +3*x -1)*sinh(x) +(2*x^2 +3*x -2)*cosh(x))/2. (End)
MATHEMATICA
Accumulate[Select[Range[120], MemberQ[{0, 1, 2, 7}, Mod[#, 8]]&]] (* Harvey P. Dale, Mar 08 2011 *)
Table[(4*n^2 +2*n -3 +2*(1 +(-1)^n)*I^n -(-1)^n)/4, {n, 1, 100}] (* G. C. Greubel, Sep 04 2018 *)
PROG
(PARI) vector(100, n, (4*n^2 +2*n -3 +2*(1 +(-1)^n)*I^n -(-1)^n)/4) \\ G. C. Greubel, Sep 04 2018
(PARI) x='x+O('x^99); Vec(x*(1+x+5*x^2+x^3)/((1-x)^2*(1-x^4))) \\ Altug Alkan, Sep 05 2018
(Magma) C<I> := ComplexField(); [Round((4*n^2 +2*n -3 +2*(1 +(-1)^n)*I^n -(-1)^n)/4): n in [1..100]]; // G. C. Greubel, Sep 04 2018
CROSSREFS
Cf. A047527.
Sequence in context: A363993 A031063 A051938 * A210286 A275988 A177955
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 19 2009
STATUS
approved