login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171829 Nonnegative integers that can be made by using six sixes (6 6's) and the four basic operators {+, -, *, /}. 13
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 54, 60, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 90, 96, 102, 107 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

More integers can be made if other operators are allowed (i.e., 22 = 6!/(6*6)+ (6+6)/6. The sequence is finite: a(198) = 6*6*6*6*6*6 = 46656 is the last term.

See A258068 ff. for the integers that can be generated with the four basic operators and 7 7's, 8 8's, 9 9's, etc...

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..198

Wikipedia, Four Fours

EXAMPLE

49 is in the sequence: 49 = (6 + 6/6) * (6 + 6/6).

MAPLE

f:= proc(n) f(n):= `if`(n=1, {6}, {seq(seq(seq([x+y, x-y, x*y,

      `if`(y=0, [][], x/y)][], y=f(n-j)), x=f(j)), j=1..n-1)})

    end:

sort([select(z->z>=0 and is(z, integer), f(6))[]])[];

#  Alois P. Heinz, Aug 04 2013

MATHEMATICA

f[1] = {6}; f[n_] := f[n] = Union @ Flatten @ Table[Table[Table[{x+y, x-y, x*y, If[y == 0, Null, x/y]}, {y, f[n-j]}], {x, f[j]}], {j, 1, n-1}];

Sort[Select[f[6], # >= 0 && IntegerQ[#]&]] (* Jean-François Alcover, Jun 01 2018, after Alois P. Heinz *)

PROG

(PARI) A171829(n=6, S=Vec([[n]], n))={for(n=2, n, S[n]=Set(concat(vector(n\2, k, concat([concat([[T+U, T-U, U-T, if(U, T/U), if(T, U/T), T*U] | T <- S[k]]) | U <- S[n-k]]))))); select(t-> t>=0 && denominator(t)==1, S[n])} \\ A171829() yields this sequence. Optional args allow to compute variants. - M. F. Hasler, Nov 24 2018

CROSSREFS

Cf. A171826, A171827, A171828, A258068, A258069, A258070, A258071.

Cf. A182002, A258097.

Sequence in context: A085380 A274399 A276181 * A162421 A275164 A076499

Adjacent sequences:  A171826 A171827 A171828 * A171830 A171831 A171832

KEYWORD

nonn,fini,full

AUTHOR

Sergio Pimentel, Dec 19 2009

EXTENSIONS

Corrected and edited by Alois P. Heinz, Aug 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 05:43 EDT 2019. Contains 328044 sequences. (Running on oeis4.)