OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
FORMULA
Sum_{k=0..n} T(n, k) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1) = A183160(n). - G. C. Greubel, Feb 22 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 30, 30, 1;
1, 70, 225, 70, 1;
1, 135, 980, 980, 135, 1;
1, 231, 3150, 7056, 3150, 231, 1;
1, 364, 8316, 34650, 34650, 8316, 364, 1;
1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1;
1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1;
1, 1045, 75735, 1166880, 5465460, 9018009, 5465460, 1166880, 75735, 1045, 1;
MATHEMATICA
Table[Binomial[2*n-k, k]*Binomial[n+k, 2*k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Sage) flatten([[binomial(2*n-k, k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 22 2021
(Magma) [Binomial(2*n-k, k)*Binomial(n+k, 2*k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 22 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 19 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 22 2021
STATUS
approved