The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171800 a(n) = ((n+1)*2^n + 1)*(2^n + 1)^(n-1). 3
 1, 5, 65, 2673, 397953, 228882753, 520970490625, 4723480504289025, 170687922720157732865, 24563695027660686202250241, 14068441356460459384918212890625, 32058887942708146080692278858371608577, 290694663888102785007861162394348756446314497 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..58 FORMULA O.G.f.: Sum_{n>=0} (n+1)*2^(n^2) * x^n/(1 - 2^n*x)^(n+1). E.g.f.: Sum_{n>=0} (n+1)*2^(n^2) * exp(2^n*x) * x^n/n!. EXAMPLE G.f.: A(x) = 1 + 5*x + 65*x^2 + 2673*x^3 + 397953*x^4 +... A(x) = 1/(1-x) + 2*2*x/(1-2*x)^2 + 3*2^4*x^2/(1-2^2*x)^3 + 4*2^9*x^3/(1-2^3*x)^4 +... MATHEMATICA Table[((n + 1)*2^n + 1)*(2^n + 1)^(n - 1), {n, 0, 15}] (* Wesley Ivan Hurt, Jan 19 2017 *) PROG (PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^(m+1)), n)} (PARI) {a(n)=n!*polcoeff(sum(k=0, n, (k+1)*2^(k^2)*exp(2^k*x)*x^k/k!), n)} (PARI) {a(n)=((n+1)*2^n+1)*(2^n+1)^(n-1)} CROSSREFS Cf. A136516, A171801, A171799. Sequence in context: A012635 A196975 A247540 * A195244 A162080 A012476 Adjacent sequences:  A171797 A171798 A171799 * A171801 A171802 A171803 KEYWORD nonn,easy AUTHOR Paul D. Hanna, Jan 20 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 13:27 EDT 2020. Contains 336504 sequences. (Running on oeis4.)