OFFSET
1,1
COMMENTS
Consider a table T(n,k) similar to A168142 = {2,1}, {8,7,6,...,2,1}, {18,17,...,2,1},... that repeats each row. Thus T(n,k) = {2,1}, {2,1}, {8,7,6,...,2,1}, {8,7,6,...,2,1}, {18,17,...,2,1}, etc. The rows of T(n,k) decrement from 2*ceiling(n/2)^2 to 1. Then we can construct the table of atomic numbers in the Janet periodic table A138509(n) = T(n,k) + a(n), with k=2*ceiling(n/2)^2 - 1 down to 1 by step -1.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10680 (first 39 rows)
FORMULA
May be regarded as an irregular triangle read by rows, defined by T(n,k) = A168380(n) + 1, with 1 <= k <= ceiling(n/2)^2. - Michael De Vlieger, Jul 20 2016
MATHEMATICA
Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12 + 1, {n, 7}, {k, 2 Ceiling[n/2]^2}] // Flatten (* Michael De Vlieger, Jul 20 2016 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul Curtz, Dec 16 2009
STATUS
approved