login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171685 Triangle T(n,k) which contains 16*n!*2^floor((n+1)/2) times the coefficient [t^n x^k] exp(t*x)/(15 + exp(8*t)) in row n, column k. 0
1, -1, 2, -7, -2, 2, -83, -42, -6, 4, -266, -332, -84, -8, 4, 5666, -2660, -1660, -280, -20, 8, 146762, 33996, -7980, -3320, -420, -24, 8, 3415978, 2054668, 237972, -37240, -11620, -1176, -56, 16, 7599256, 27327824, 8218672, 634592, -74480 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The bivariate taylor expansion of exp(t*x)/(15+exp(8*t)) is 1/16 + (x/16-1/32)*t +(-7/64+x^2/32 -x/32)*t^2+ (-83/384+x^3/96-7*x/64-x^2/64)*t^3+...

Row n contains the coefficients of the polynomial in front of t^n, multiplied by 16*floor[(n+1)/2]*n!.

Row sums are: 1, 1, -7, -127, -686, 1054, 169022, 5658542, 43685656, -1052651384, -55785840712,....

LINKS

Table of n, a(n) for n=0..40.

EXAMPLE

The triangle starts in row n=0 with columns 0<=k <=n as

1;

-1, 2;

-7, -2, 2;

-83, -42, -6, 4;

-266, -332, -84, -8, 4;

5666, -2660, -1660, -280, -20, 8;

146762, 33996, -7980, -3320, -420, -24, 8;

3415978, 2054668, 237972, -37240, -11620, -1176, -56, 16;

7599256, 27327824, 8218672, 634592, -74480, -18592, -1568, -64, 16;

-1487228056, 136786608, 245950416, 49312032, 2855664, -268128, -55776, -4032, -144, 32;

-42545787592, -14872280560, 683933040, 819834720, 123280080, 5711328, -446880, -79680, -5040, -160, 32;

MATHEMATICA

Clear[p, g, m, a];

m = 3;

p[t_] = 2^(m + 1)*Exp[t*x]/(-1 + 2^(m + 1) + Exp[2^m*t])

Table[ FullSimplify[ExpandAll[2^ Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], {n, 0, 10}]

a = Table[CoefficientList[FullSimplify[ExpandAll[2^Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]

Flatten[a]

CROSSREFS

Cf. A000364, A171684.

Sequence in context: A073246 A021790 A266390 * A011048 A307671 A011401

Adjacent sequences: A171682 A171683 A171684 * A171686 A171687 A171688

KEYWORD

sign,tabl

AUTHOR

Roger L. Bagula, Dec 15 2009

EXTENSIONS

Number of variables in use reduced from 4 to 2, keyword:tabl added - The Assoc. Eds. of the OEIS, Oct 20 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 17:44 EST 2022. Contains 358473 sequences. (Running on oeis4.)