OFFSET
0,4
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
FORMULA
EXAMPLE
Triangle begins as
1;
1, 1;
4, 2, 1;
13, 12, 3, 1;
46, 52, 24, 4, 1;
166, 230, 130, 40, 5, 1; ...
MATHEMATICA
T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
PROG
(PARI) {T(n, k) = (-1)^(n-k)*binomial(n, k)*sum(j=0, n-k, (-1)^j*binomial(n-k+j, j))}; \\ G. C. Greubel, Apr 29 2019
(Magma) [[(-1)^(n-k)*Binomial(n, k)*(&+[(-1)^j*Binomial(n-k+j, j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
(Sage) [[(-1)^(n-k)*binomial(n, k)*sum((-1)^j*binomial(n-k+j, j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 13 2009
STATUS
approved