login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171631 Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)),  n > 0 and 0 <= k <= n - 1. 1
1, 4, 2, 9, 12, 3, 16, 36, 24, 4, 25, 80, 90, 40, 5, 36, 150, 240, 180, 60, 6, 49, 252, 525, 560, 315, 84, 7, 64, 392, 1008, 1400, 1120, 504, 112, 8, 81, 576, 1764, 3024, 3150, 2016, 756, 144, 9, 100, 810, 2880, 5880, 7560, 6300, 3360, 1080, 180, 10, 121, 1100 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If T(0,0) = 0 is prepended, then row sums give A001788.

REFERENCES

Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32.

LINKS

Table of n, a(n) for n=1..57.

FORMULA

Let p(x;n) = (x + 1)^n. Then row n are the coefficients in the expansion of p''(x;n) - x*p'(x;n) + n*p(x;n) = n*(x + n)*(x + 1)^(n - 2).

From Franck Maminirina Ramaharo, Oct 02 2018: (Start)

T(n,1) = A000290(n).

T(n,2) = A011379(n).

T(n,3) = 3*A002417(n-2).

T(n,n-2) = A046092(n-1).

T(n,n-3) = 9*A000292(n-2).

G.f.: y*(x*y - y - 1)/(x*y + y - 1)^3. (End)

EXAMPLE

Triangle begins:

n\k|  0    1     2     3     4     6    7    8  9

-------------------------------------------------

1  |  1

2  |  4    2

3  |  9   12     3

4  | 16   36    24     4

5  | 25   80    90    40     5

6  | 36  150   240   180    60     6

7  | 49  252   525   560   315    84    7

8  | 64  392  1008  1400  1120   504  112    8

9  | 81  576  1764  3024  3150  2016  756  144  9

... reformatted. - Franck Maminirina Ramaharo, Oct 02 2018

MATHEMATICA

Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten

PROG

(Maxima) T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$

tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* Franck Maminirina Ramaharo, Oct 02 2018 */

CROSSREFS

Cf. A003506, A007318, A127952, A171531.

Sequence in context: A233295 A298567 A006172 * A052915 A130273 A016516

Adjacent sequences:  A171628 A171629 A171630 * A171632 A171633 A171634

KEYWORD

nonn,tabl,easy

AUTHOR

Roger L. Bagula, Dec 13 2009

EXTENSIONS

Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)