login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171414 Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = ((x^n - 1)/(x - 1))^floor(n/2) if n is odd, and p(x,n) = ((x^n - 1)/(x - 1))*p(x,n-1) otherwise. 1
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 117, 152, 186, 216, 239, 252, 252, 239, 216, 186, 152, 117, 84, 56, 35, 20, 10, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Table of n, a(n) for n=1..80.

EXAMPLE

Triangle begins:

  1;

  1, 1;

  1, 1, 1;

  1, 2, 3,  3,  2,  1;

  1, 2, 3,  4,  5,  4,  3,  2,  1;

  1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10,  6,  3,  1;

  1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1;

  ...

MATHEMATICA

p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, Sum[x^i, {i, 0, n - 1}]*p[x, n - 1], (Sum[x^i, {i, 0, n - 1}])^Floor[n/2]]

Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]

PROG

(Maxima)

p(x, n) := if mod(n, 2) = 0 then ((x^n - 1)/(x - 1))*p(x, n - 1) else ((x^n - 1)/(x - 1))^floor(n/2)$

T(n, k) := ratcoef(p(x, n), x, k)$

create_list(T(n, k), n, 1, 10, k, 0, hipow(fullratsimp(p(x, n)), x));

/* Franck Maminirina Ramaharo, Jan 13 2019 */

CROSSREFS

Cf. A008406, A171412.

Sequence in context: A274885 A287732 A334223 * A270921 A038529 A176259

Adjacent sequences:  A171411 A171412 A171413 * A171415 A171416 A171417

KEYWORD

nonn,easy,tabf

AUTHOR

Roger L. Bagula, Dec 08 2009

EXTENSIONS

Edited by Franck Maminirina Ramaharo, Jan 13 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 18:19 EDT 2020. Contains 335652 sequences. (Running on oeis4.)