OFFSET
1,3
COMMENTS
All primes were certified with WinPFGW.
a(24) > 35000. - Serge Batalov, Dec 20 2015
LINKS
Chris K. Caldwell, Prime Pages, Database Search Output
FORMULA
a(n) = (A100028(n-1) - 1)/2 for n>1. - Jeppe Stig Nielsen, Oct 06 2024
EXAMPLE
4 is in the sequence because 10^8 + 3 * 10^4 + 1 = 100030001 is prime.
MATHEMATICA
Select[Range@ 1000, PrimeQ[1 + 3 10^# + 100^#] &] (* Michael De Vlieger, Dec 18 2015 *)
PROG
(PARI) \\sieve for the candidates:
{
lim=10^9; ns=6*10^5; pp=10^7; s=vectorsmall(ns);
forprime(p=11, lim, if(kronecker(5, p)==1, o=znorder(t=Mod(10, p));
q=sqrt(Mod(5, p)); r=znlog((q-3)/2, t, o);
if(r, forstep(n=r, ns, o, s[n]=1); forstep(n=o-r, ns, o, s[n]=1)));
if(p>pp, pp+=10000000; print1(p" ")));
for(n=1, ns, if(!s[n], write("sieve_out_10301NGm1.txt", n)));
}
\\quick initial check for small sequence members
for(n=0, 2297, if(ispseudoprime((10^n+3)*10^n+1), print1(n", ")))
\\ Serge Batalov, Dec 17 2015
(Magma) [n: n in [0..4*10^2] | IsPrime(1+3*10^n+100^n)]; // Vincenzo Librandi, Dec 22 2015
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Jason Earls, Dec 07 2009
EXTENSIONS
a(21)-a(23) from Serge Batalov, Dec 20 2015
STATUS
approved