login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171199 G.f. satisfies: A(x) = exp( Sum_{n>=1} [A(x)^n + A(x)^-n]*x^n/n ). 4
1, 2, 3, 8, 25, 83, 289, 1041, 3847, 14504, 55569, 215727, 846761, 3354858, 13398965, 53888063, 218053915, 887107888, 3626373205, 14887942624, 61358959587, 253771944529, 1052917272543, 4381374717994, 18280470530047 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Same as A143330 after initial terms.

LINKS

Table of n, a(n) for n=0..24.

FORMULA

G.f.: A(x) = (1+x^2 - sqrt(1 - 4*x - 2*x^2 + x^4))/(2*x).

G.f. satisfies: 1 = (A(x) - x)*(1 - x*A(x)).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 3*x^2 + 8*x^3 + 25*x^4 + 83*x^5 + 289*x^6 +...

log(A(x)) = [A(x)+1/A(x)]*x + [A(x)^2+1/A(x)^2]*x^2/2 + [A(x)^3+1/A(x)^3]*x^3/3 +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, (A^m+A^-m+x*O(x^n))*x^m/m))); polcoeff(A, n)}

(PARI) {a(n)=polcoeff((1+x^2-sqrt((1-x^2)^2-4*x+x^2*O(x^n)))/(2*x), n)}

CROSSREFS

Cf. A171190, A171191, A143330.

Sequence in context: A127905 A277040 A009224 * A176962 A243963 A065619

Adjacent sequences:  A171196 A171197 A171198 * A171200 A171201 A171202

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 09:03 EST 2016. Contains 278906 sequences.