login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171199 G.f. satisfies: A(x) = exp( Sum_{n>=1} [A(x)^n + A(x)^-n]*x^n/n ). 3
1, 2, 3, 8, 25, 83, 289, 1041, 3847, 14504, 55569, 215727, 846761, 3354858, 13398965, 53888063, 218053915, 887107888, 3626373205, 14887942624, 61358959587, 253771944529, 1052917272543, 4381374717994, 18280470530047 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Same as A143330 after initial terms.

LINKS

Table of n, a(n) for n=0..24.

FORMULA

G.f.: A(x) = (1+x^2 - sqrt(1 - 4*x - 2*x^2 + x^4))/(2*x).

G.f. satisfies: 1 = (A(x) - x)*(1 - x*A(x)).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 3*x^2 + 8*x^3 + 25*x^4 + 83*x^5 + 289*x^6 +...

log(A(x)) = [A(x)+1/A(x)]*x + [A(x)^2+1/A(x)^2]*x^2/2 + [A(x)^3+1/A(x)^3]*x^3/3 +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, (A^m+A^-m+x*O(x^n))*x^m/m))); polcoeff(A, n)}

(PARI) {a(n)=polcoeff((1+x^2-sqrt((1-x^2)^2-4*x+x^2*O(x^n)))/(2*x), n)}

CROSSREFS

Cf. A171190, A171191, A143330.

Sequence in context: A129202 A127905 A009224 * A176962 A243963 A065619

Adjacent sequences:  A171196 A171197 A171198 * A171200 A171201 A171202

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 02:47 EST 2014. Contains 252175 sequences.