%I #11 Jul 25 2023 07:29:13
%S 1,1,17,689,53777,7805201,2138582801,1132509669905,1178804946216209,
%T 2433551908785577745,10007244528797884954897,
%U 82140401194398306308608785,1347106337625031145913841134865,44163564651481078406730693648713489
%N G.f. satisfies A(x) = 1/(1 - x*A(2x)^8).
%H Seiichi Manyama, <a href="/A171198/b171198.txt">Table of n, a(n) for n = 0..79</a>
%F a(n) ~ c * 2^(n*(n+5)/2), where c = 0.265929653305627916979803234586945454418485... - _Vaclav Kotesovec_, Nov 03 2021
%t nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 - x*A[2*x]^8) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* _Vaclav Kotesovec_, Nov 03 2021 *)
%o (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^8) ); polcoeff(A, n)}
%Y Cf. A015083, A171192-A171197.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 05 2009