login
A171198
G.f. satisfies A(x) = 1/(1 - x*A(2x)^8).
8
1, 1, 17, 689, 53777, 7805201, 2138582801, 1132509669905, 1178804946216209, 2433551908785577745, 10007244528797884954897, 82140401194398306308608785, 1347106337625031145913841134865, 44163564651481078406730693648713489
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 2^(n*(n+5)/2), where c = 0.265929653305627916979803234586945454418485... - Vaclav Kotesovec, Nov 03 2021
MATHEMATICA
nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 - x*A[2*x]^8) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^8) ); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2009
STATUS
approved