%I #11 Jul 25 2023 08:49:59
%S 1,1,9,185,7241,525513,71973193,19054326985,9916177373001,
%T 10235479554015689,21045100094428458057,86370025530284981044937,
%U 708236082282948046820221257,11609413456993946896013575994313
%N G.f. satisfies A(x) = 1/(1 - x*A(2x)^4).
%H Seiichi Manyama, <a href="/A171194/b171194.txt">Table of n, a(n) for n = 0..80</a>
%F a(n) ~ c * 2^(n*(n+3)/2), where c = 0.5726679317239416602436569686037310143000778... - _Vaclav Kotesovec_, Nov 03 2021
%t nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 - x*A[2*x]^4) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* _Vaclav Kotesovec_, Nov 03 2021 *)
%o (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^4) ); polcoeff(A, n)}
%Y Cf. A015083, A171192, A171193, A171195-A171198.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 05 2009