login
A171186
G.f.: exp( Sum_{n>=1} (x^n/n)*[Sum_{k=0..[n/2]} A034807(n,k)^n] ), where A034807 is a triangle of Lucas polynomials.
2
1, 1, 3, 12, 82, 1350, 97888, 15395388, 3754569984, 3038160817708, 10054063262475469, 52672088781183258841, 474423679267205966998406, 20987531454245723696517676183, 2606758801245041424971290635855234
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 82*x^4 + 1350*x^5 +...
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 273*x^4/4 + 6251*x^5/5 +...+ A171187(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (x^m/m)*sum(k=0, m\2, (binomial(m-k, k)+binomial(m-k-1, k-1))^m))+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 13 2009
STATUS
approved