

A171180


a(n) = (4*n + 1)^(1/2)/(4*n + 1)*((1  p)*q^n  (1  q)*p^n), where p = (1  (4*n + 1)^(1/2))/2 and q = (1 + (4*n + 1)^(1/2))/2.


1



1, 3, 7, 29, 96, 463, 1905, 10233, 49159, 287891, 1557744, 9814741, 58451849, 392539575, 2532516511, 17999936497, 124360077816, 930257069563, 6822980957481, 53470578301581, 413527226164711, 3382254701784223, 27432377661111360, 233410016529114601
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If a sequence (s(n): n >= 0) is of the form s(0) = x, s(1) = x, and s(n) = s(n1) + k*s(n2) for n >= 2 (for some integer k >= 1 and some number x), then s(k) = a(k)*x. For example, if k = 6 and x = 3, then (s(n): n = 0..6) = (3, 3, 21, 39, 165, 399, 1389) and s(6) = 1389 = 463*3 = a(6)*x. [Edited by Petros Hadjicostas, Dec 26 2019]


LINKS

Table of n, a(n) for n=1..24.
A. G. Shannon and J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, 21(2) (2015), 3542.


FORMULA

a(n) = A193376(n,n).  Olivier Gérard, Jul 25 2011
a(n) = [x^n] 1/(1  x  n*x^2).  Paul D. Hanna, Dec 27 2012


PROG

(PARI) {a(n)=polcoeff(1/(1xn*x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012


CROSSREFS

Sequence in context: A148765 A148766 A148767 * A151358 A110613 A337489
Adjacent sequences: A171177 A171178 A171179 * A171181 A171182 A171183


KEYWORD

nonn


AUTHOR

Gary Detlefs, Dec 04 2009


STATUS

approved



