login
Three-dimensional Welschinger invariants.
1

%I #17 Aug 28 2022 04:17:26

%S 1,-1,45,-14589,17756793,-58445425017,426876362998821,

%T -6061743911446054965,152244625648721441783409

%N Three-dimensional Welschinger invariants.

%H Aubin Arroyo, Erwan Brugallé and Lucía López de Medrano, <a href="https://doi.org/10.1093/imrn/rnq096">Recursive formulas for Welschinger invariants of the projective plane</a>, International Mathematics Research Notices, 2011, 1107-1134; arXiv:<a href="https://arxiv.org/abs/0809.1541">0809.1541</a> [math.AG], 2008-2010. See numbers W3(d) in Section 7.3.

%H Erwan Brugallé and Penka Georgieva, <a href="https://doi.org/10.1007/s00208-016-1398-x">Pencils of quadrics and Gromov-Witten-Welschinger invariants of CP^3</a>, Mathematische Annalen 365, 363-380 (2016); arXiv:<a href="https://arxiv.org/abs/1508.02560">1508.02560</a> [math.AG], 2015-2016.

%H Erwan Brugallé and Grigory Mikhalkin, <a href="https://doi.org/10.1016/j.crma.2007.07.026">Enumeration of curves via floor diagrams</a>, C. R. Acad. Sci. Paris, Ser. I, 345 (2007), 329-334; arXiv:<a href="https://arxiv.org/abs/0706.0083">0706.0083</a> [math.AG], 2007.

%Y Cf. A319851.

%K sign,more

%O 0,3

%A _N. J. A. Sloane_, Sep 27 2010

%E a(4)-a(6) from Arroyo et al. added by _Andrey Zabolotskiy_, May 03 2022

%E a(7)-a(8) from Brugallé & Georgieva added by _Andrey Zabolotskiy_, Aug 27 2022