The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171079 Denominator of s_{2n}, where s_0 = 1/2, s_n = | 2^n*(2^(n-1)-1)*Bernoulli(n)/n! | for n>0. 2
 2, 3, 45, 945, 4725, 13365, 638512875, 18243225, 23260111875, 38979295480125, 1531329465290625, 274446060013125, 201919571963756521875, 11094481976030578125, 80664808595725181953125, 5660878804669082674070015625, 31245110285511170603633203125, 75344438393998438430390625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; p. 12, Eq. 11. LINKS FORMULA a(n) = denominator(Zeta(2*n)*(4^n-2)/Pi^(2*n)). - Peter Luschny, Aug 11 2014 EXAMPLE 1/2, 1/3, 7/45, 62/945, 127/4725, 146/13365, 2828954/638512875, 32764/18243225, 16931177/23260111875, 11499383114/38979295480125, ... MAPLE A171079 := n -> denom(Zeta(2*n)*(4^n-2)/Pi^(2*n)); seq(A171079(n), n=0..17); # Peter Luschny, Aug 11 2014 CROSSREFS Cf. A171078 (numerators). Sequence in context: A060415 A289661 A191996 * A097929 A266512 A041501 Adjacent sequences:  A171076 A171077 A171078 * A171080 A171081 A171082 KEYWORD nonn,frac AUTHOR N. J. A. Sloane, Sep 06 2010 EXTENSIONS a(0) changed in accordance with the zeta based formula. Peter Luschny, Aug 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 20:15 EDT 2022. Contains 353876 sequences. (Running on oeis4.)