The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A170919 Write tan x = Prod_{n>=1} (1 + g_n x^n); a(n) = denominator(g_n). 2
 1, 1, 3, 3, 5, 45, 105, 315, 2835, 14175, 5775, 467775, 6081075, 2837835, 212837625, 70945875, 3618239625, 97692469875, 206239658625, 9280784638125, 1031198293125, 142924083427125, 322279795963125, 101111706320625, 136968913284328125, 161872352063296875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008. Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364. Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016. H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161. H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239. W. Lang, Recurrences for the general problem. EXAMPLE 1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ... MAPLE L := 28: g := NULL: t := series(tan(x), x, L): for n from 1 to L-2 do    c := coeff(t, x, n);    t := series(t/(1 + c*x^n), x, L);    g := g, c; od: map(denom, [g]); # Based on Maple in A170918. Peter Luschny, Oct 05 2019 CROSSREFS Cf. A170918, A170910-A170917. Sequence in context: A200562 A093310 A256402 * A280779 A241591 A248592 Adjacent sequences:  A170916 A170917 A170918 * A170920 A170921 A170922 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 04:16 EST 2020. Contains 331168 sequences. (Running on oeis4.)