login
A170913
Write cos(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).
12
2, 24, 360, 13440, 453600, 47900160, 5448643200, 2988969984000, 3126159036000, 101370917007360000, 4390627842881280000, 552984315270266880000, 393839317506450816000000, 1465809349094778175488000000, 129517997955171415349760000000, 263130836933693530167218012160000000
OFFSET
1,1
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
EXAMPLE
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
MAPLE
t1:=cos(x);
L:=100;
t0:=series(t1, x, L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
od:
g;
h:=[seq(g[2*n], n=1..nops(g)/2)];
h1:=map(numer, h);
h2:=map(denom, h);
MATHEMATICA
A[m_, n_] :=
A[m, n] =
Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Denominator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
CROSSREFS
Cf. A170912.
Sequence in context: A119702 A126804 A344057 * A090114 A188953 A081685
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 30 2010
STATUS
approved