login
Expansion of g.f.: (1+x)/(1-36*x).
50

%I #17 Sep 08 2022 08:45:49

%S 1,37,1332,47952,1726272,62145792,2237248512,80540946432,

%T 2899474071552,104381066575872,3757718396731392,135277862282330112,

%U 4870003042163884032,175320109517899825152,6311523942644393705472,227214861935198173396992

%N Expansion of g.f.: (1+x)/(1-36*x).

%H G. C. Greubel, <a href="/A170756/b170756.txt">Table of n, a(n) for n = 0..639</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (36).

%F a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*37^k. - _Philippe Deléham_, Dec 04 2009

%F E.g.f.: (1/36)*(37*exp(36*x) - 1). - _Stefano Spezia_, Oct 09 2019

%p k:=37; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # _G. C. Greubel_, Oct 09 2019

%t With[{k = 37}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* _G. C. Greubel_, Oct 09 2019 *)

%o (PARI) vector(26, n, k=37; if(n==1, 1, k*(k-1)^(n-2))) \\ _G. C. Greubel_, Oct 09 2019

%o (Magma) k:=37; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // _G. C. Greubel_, Oct 09 2019

%o (Sage) k=37; [1]+[k*(k-1)^(n-1) for n in (1..25)] # _G. C. Greubel_, Oct 09 2019

%o (GAP) k:=37;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Oct 09 2019

%Y Cf. A003945.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Dec 04 2009