%I #24 Sep 08 2022 08:45:49
%S 1,33,1056,33792,1081344,34603008,1107296256,35433480192,
%T 1133871366144,36283883716608,1161084278931456,37154696925806592,
%U 1188950301625810944,38046409652025950208,1217485108864830406656,38959523483674573012992,1246704751477586336415744
%N Expansion of g.f.: (1+x)/(1-32*x).
%H Kenny Lau, <a href="/A170752/b170752.txt">Table of n, a(n) for n = 0..664</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (32).
%F a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*33^k. - _Philippe Deléham_, Dec 04 2009
%F a(0) = 1; for n>0, a(n) = 33*32^(n-1). - _Vincenzo Librandi_, Dec 05 2009
%F E.g.f.: (1/32)*(33*exp(32*x) - 1) - _Stefano Spezia_, Oct 09 2019
%p k:=33; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # _G. C. Greubel_, Oct 09 2019
%t With[{k = 33}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* _G. C. Greubel_, Oct 09 2019 *)
%o (Python) for i in range(1001):print(i,33*32**(i-1) if i>0 else 1) # _Kenny Lau_, Aug 03 2017
%o (PARI) vector(26, n, k=33; if(n==1, 1, k*(k-1)^(n-2))) \\ _G. C. Greubel_, Oct 09 2019
%o (Magma) k:=33; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // _G. C. Greubel_, Oct 09 2019
%o (Sage) k=33; [1]+[k*(k-1)^(n-1) for n in (1..25)] # _G. C. Greubel_, Oct 09 2019
%o (GAP) k:=33;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Oct 09 2019
%Y Cf. A003945.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Dec 04 2009