login
A170658
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.
0
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134400, 38042028579225600, 913008685901414400, 21912208461633945600, 525893003079214694400
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170744, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, -276).
FORMULA
G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(276*t^49 - 23*t^48 - 23*t^47 - 23*t^46 - 23*t^45 - 23*t^44 - 23*t^43
- 23*t^42 - 23*t^41 - 23*t^40 - 23*t^39 - 23*t^38 - 23*t^37 - 23*t^36 -
23*t^35 - 23*t^34 - 23*t^33 - 23*t^32 - 23*t^31 - 23*t^30 - 23*t^29 -
23*t^28 - 23*t^27 - 23*t^26 - 23*t^25 - 23*t^24 - 23*t^23 - 23*t^22 -
23*t^21 - 23*t^20 - 23*t^19 - 23*t^18 - 23*t^17 - 23*t^16 - 23*t^15 -
23*t^14 - 23*t^13 - 23*t^12 - 23*t^11 - 23*t^10 - 23*t^9 - 23*t^8 -
23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[48]]+t^49+1, den=Total[-23 t^Range[48]]+276t^49+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Oct 20 2013 *)
CROSSREFS
Sequence in context: A170514 A170562 A170610 * A170706 A170744 A362473
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved