NUMBERS THAT ARE NEARLY DOUBLED WHEN REVERSED

DAVID G. RADCLIFFE

Abstract

We find all numbers N such that $\operatorname{rev}(N)=2 N-1$, where $\operatorname{rev}(N)$ is the digit reversal of N.

Digit reversal is a frequent topic in recreational mathematics. A number that is unchanged when its digits are reversed is called a palindrome. At the time of writing, there are 2366 sequences in the On-Line Encyclopedia of Integer Sequences that mention palindromes in their descriptions.

It is interesting to investigate the possible relations that can exist between a number and its digit reversal. For example, 2178 has the remarkable property that its reversal is four times as large. In fact, there are infinitely many numbers with this property.

$$
\begin{aligned}
2178 \times 4 & =8712 \\
21978 \times 4 & =87912 \\
219978 \times 4 & =879912 \\
2199978 \times 4 & =8799912
\end{aligned}
$$

We will prove that there is no number (except 0) whose reversal is twice as large. However, there are infinitely many near misses; numbers N whose reversal is equal to $2 N-1$. We will prove that the sequence shown below represents all solutions to $\operatorname{rev}(N)=2 N-1$.

$$
\begin{aligned}
1 \times 2-1 & =1 \\
37 \times 2-1 & =73 \\
397 \times 2-1 & =793 \\
3997 \times 2-1 & =7993 \\
39997 \times 2-1 & =79993
\end{aligned}
$$

Formally, the digit reversal of an n-digit number

$$
N=\sum_{i=0}^{n-1} d_{i} 10^{i}, \quad d_{i} \in\{0,1,2, \ldots, 9\}
$$

[^0]is defined by
$$
\operatorname{rev}_{n}(N)=\sum_{i=0}^{n-1} d_{n-1-i} 10^{i}
$$

Leading zeros are allowed. For example, $\operatorname{rev}_{3}(123)=321$, but $\operatorname{rev}_{4}(123)=$ 3210.

The digit reversal of an n-digit number can be computed recursively, by reversing the first $(n-1)$ digits, then moving the last digit to the front. Formally,

$$
\operatorname{rev}_{n}(10 a+b)=10^{n-1} b+\operatorname{rev}_{n-1}(a) \quad\left(0 \leq a<10^{n-1}, 0 \leq b \leq 9\right)
$$

with initial condition $\operatorname{rev}_{0}(0)=0$.
Theorem 1. $\operatorname{rev}_{n}\left(\operatorname{rev}_{n}(N)\right)=N$ for $0 \leq N<10^{n}$.
Proof. Let $N=\sum_{i=0}^{n-1} d_{i} 10^{i}$, where $d_{i} \in\{0,1,2, \ldots, 9\}$. Then

$$
\begin{aligned}
\operatorname{rev}_{n}\left(\operatorname{rev}_{n}(N)\right) & =\operatorname{rev}_{n}\left(\sum_{i=0}^{n-1} d_{i} 10^{i}\right) \\
& =\operatorname{rev}_{n}\left(\sum_{i=0}^{n-1} d_{n-1-i} 10^{i}\right) \\
& =\sum_{i=0}^{n-1} d_{n-1-(n-1-i)} 10^{i} \\
& =\sum_{i=0}^{n-1} d_{i} 10^{i} \\
& =N .
\end{aligned}
$$

Theorem 2. If $S=10^{n}-1$ and $0 \leq N \leq S$ then $\operatorname{rev}_{n}(S-N)=S-\operatorname{rev}_{n}(N)$. Proof. Let $N=\sum_{i=0}^{n-1} d_{i} 10^{i}$, and note that $S=\sum_{i=0}^{n-1} 9 \cdot 10^{i}$. Therefore

$$
\begin{aligned}
\operatorname{rev}_{n}(S-N) & =\operatorname{rev}_{n}\left(\sum_{i=0}^{n-1} 9 \cdot 10^{i}-\sum_{i=0}^{n-1} d_{i} 10^{i}\right) \\
& =\operatorname{rev}_{n}\left(\sum_{i=0}^{n-1}\left(9-d_{i}\right) \cdot 10^{i}\right) \\
& =\sum_{i=0}^{n-1}\left(9-d_{n-1-i}\right) \cdot 10^{i} \\
& =\sum_{i=0}^{n-1} 9 \cdot 10^{i}-\sum_{i=0}^{n-1} d_{n-1-i} 10^{i} \\
& =S-\operatorname{rev}_{n}(N) .
\end{aligned}
$$

The reader is familiar with the standard algorithm for adding positive integers, but we will give a formal description. Let A and B be nonnegative integers whose decimal expansions are $A=\sum_{i} a_{i} 10^{i}$ and $B=\sum_{i} b_{i} 10^{i}$ respectively. Suppose that the sum $A+B$ has decimal expansion $A+B=$ $\sum_{i} d_{i} 10^{i}$. Then

$$
\begin{equation*}
a_{i}+b_{i}+c_{i-1}=d_{i}+10 c_{i} \tag{1}
\end{equation*}
$$

where $c_{-1}=0$ and $c_{i} \in\{0,1\}$ depending on whether a carry occurred in the column for 10^{i}.

If $A=B$ then the equation can be written as

$$
\begin{equation*}
2 a_{i}+c_{i-1}=d_{i}+10 c_{i} . \tag{2}
\end{equation*}
$$

Theorem 3. The only solution to $\operatorname{rev}_{n}(N)=2 N$ with $0 \leq N<10^{n}$ is $N=0$.

Proof. The proof is by induction on n. The case $n=0$ is trivial.
Let $N=\sum_{i=0}^{n-1} a_{i} 10^{i}$ where $a_{i} \in\{0,1,2, \ldots, 9\}$, and suppose that $\operatorname{rev}_{n}(N)=$ $2 N$. By equation 2 ,

$$
2 a_{0}=a_{n-1}+10 c_{0}
$$

and

$$
2 a_{n-1}+c_{n-2}=a_{0} .
$$

Solving this system for a_{0} and a_{n-1} yields

$$
a_{0}=\left(20 c_{0}-c_{n-2}\right) / 3
$$

and

$$
a_{n-1}=\left(10 c_{0}-2 c_{n-2}\right) / 3
$$

Since $c_{0} \in\{0,1\}$ and $c_{n-2} \in\{0,1\}$, one obtains integer values for a_{0} and a_{n-1} only when $c_{0}=c_{n-2}=0$, hence $a_{0}=a_{n-1}=0$. Since the first and last digits of N are zeros, it follows that

$$
\operatorname{rev}_{n-2}(N / 10)=2(N / 10) .
$$

By the induction hypothesis, $N / 10=0$, hence $N=0$.
Theorem 4. If $N=4 \cdot 10^{n-1}-3$ then $\operatorname{rev}_{n}(N)=2 N-1$.
Proof. The cases $n=1$ and $n=2$ are easy to check, so we suppose that $n \geq 3$. The decimal expansion of

$$
N=4 \cdot 10^{n-1}-3
$$

is

$$
N=3999 \ldots 97
$$

with $n-2$ nines. But

$$
2 N-1=8 \cdot 10^{n-1}-7
$$

and its decimal expansion is

$$
2 N-1=7999 \ldots 93
$$

with $n-2$ nines. Therefore, $\operatorname{rev}_{n}(N)=2 N-1$.
Theorem 5. If $\operatorname{rev}_{n}(N)=2 N-1$ and $0 \leq N<10^{n}$ then $N=4 \cdot 10^{n-1}-3$.
Proof. This can be verified for $n \leq 2$ by brute force, so let us assume that $n \geq 3$.

Let $N=\sum_{i=0}^{n-1} a_{i} 10^{i}$ where $a_{i} \in\{0,1,2, \ldots, 9\}$, and suppose that $\operatorname{rev}_{n}(N)=$ $2 N-1$. If $a_{0}=0$ then $a_{n-1}=9$; but this is impossible, $\operatorname{since}^{\operatorname{rev}_{n}}(N)>N$.

Since $a_{0} \geq 1$, equation 2 implies that

$$
2 a_{0}-1=a_{n-1}+10 c_{0}
$$

and

$$
2 a_{n-1}+c_{n-2}=a_{0} .
$$

Solving this system for a_{0} and a_{n-1} yields

$$
a_{0}=\left(20 c_{0}-c_{n-2}+2\right) / 3
$$

and

$$
a_{n-1}=\left(10 c_{0}-2 c_{n-2}+1\right) / 3 .
$$

One obtains integer values for a_{0} and a_{n-1} only when $c_{0}=c_{n-2}=1$, hence $a_{0}=7$ and $a_{n-1}=3$. Therefore, there exists an integer A such that $0 \leq A<10^{n-2}$ and

$$
N=3 \cdot 10^{n-1}+10 A+7 .
$$

Since $\operatorname{rev}_{n}(N)=2 N-1$, it follows that

$$
\begin{equation*}
2 N-1=7 \cdot 10^{n-1}+10 B+3 \tag{3}
\end{equation*}
$$

where $B=\operatorname{rev}_{n-2}(A)$.
Eliminating N from the two equations yields

$$
0=-10^{n-1}+20 A-10 B+10
$$

which can be rewritten as

$$
2(S-A)=(S-B)
$$

where $S=10^{n-2}-1$.
By Theorem 2,

$$
S-B=S-\operatorname{rev}_{n-2}(A)=\operatorname{rev}_{n-2}(S-A)
$$

so Theorem 3 implies that $S-A=0$. Therefore (by equation 3)

$$
N=3 \cdot 10^{n-1}+10\left(10^{n-2}-1\right)+7=4 \cdot 10^{n-1}-3 .
$$

[^0]: Date: July 24, 2015.

