login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169656 Triangle, read by rows, T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1). 1
-1, 4, 1, -36, -18, -1, 576, 432, 48, 1, -14400, -14400, -2400, -100, -1, 518400, 648000, 144000, 9000, 180, 1, -25401600, -38102400, -10584000, -882000, -26460, -294, -1, 1625702400, 2844979200, 948326400, 98784000, 3951360, 65856, 448, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums are: {-1, 5, -55, 1057, -31301, 1319581, -74996755, 5521809665, -510921831817, 58003632177301, ...}.

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

FORMULA

T(n, k) = (-1)^n * (n!/k!)^2 * binomial(n-1, k-1).

EXAMPLE

Triangle begins as:

         -1;

          4,         1;

        -36,       -18,        -1;

        576,       432,        48,       1;

     -14400,    -14400,     -2400,    -100,     -1;

     518400,    648000,    144000,    9000,    180,    1;

  -25401600, -38102400, -10584000, -882000, -26460, -294, -1;

MAPLE

seq(seq( (-1)^n*(n!/k!)^2*binomial(n-1, k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019

MATHEMATICA

T[n_, k_]:= (-1)^n*(n!/k!)^2*Binomial[n-1, k-1]; Table[T[n, k], {n, 10}, {k, n}]//Flatten

PROG

(PARI) T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1); \\ G. C. Greubel, Nov 28 2019

(MAGMA) F:=Factorial; [(-1)^n*(F(n)/F(k))^2*Binomial(n-1, k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019

(Sage) f=factorial; [[(-1)^n*(f(n)/f(k))^2*binomial(n-1, k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019

(GAP) F:=Factorial;; Flat(List([1..10], n-> List([1..n], k-> (-1)^n*(F(n)/F(k) )^2*Binomial(n-1, k-1) ))); # G. C. Greubel, Nov 28 2019

CROSSREFS

Cf. A008297.

Sequence in context: A329066 A144267 A011801 * A303987 A297900 A298495

Adjacent sequences:  A169653 A169654 A169655 * A169657 A169658 A169659

KEYWORD

sign,tabl,changed

AUTHOR

Roger L. Bagula, Apr 05 2010

EXTENSIONS

Edited by G. C. Greubel, Nov 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:18 EST 2019. Contains 329910 sequences. (Running on oeis4.)