This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A169609 Period 3: repeat [1, 3, 3]. 9
 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Interleaving of A000012, A010701 and A010701. Also continued fraction expansion of (5+sqrt(65))/10 = 1.3062257748.... Also decimal expansion of 133/999. a(n) = A144437(n) for n > 0. Unsigned version of A154595. Binomial transform of A168615. Inverse binomial transform of A168673. Essentially first differences of A047347. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,1). FORMULA a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 3, a(2) = 3. G.f.: (1+3*x+3*x^2)/(1-x^3). a(n) = 2*(n^2 mod 3)+1. [Paolo P. Lava, Dec 14 2009] a(n) = (7/3)+(2/3)*cos((2*Pi/3)*(n+1))-(2*sqrt(3)/3)*sin((2*Pi/3)*(n+1)). [Richard Choulet, Mar 15 2010] a(n) = a(n-a(n-2)) for n>=2. Example: a(5) = a(5-a(3)) = a(5-a(3-a(1))) = a(5-a(3-3)) = a(5-a(0)) = a(5-1) = a(4) = a(4-a(2)) = a(4-3) = a(1) = 3. [Richard Choulet, Mar 15 2010; edited by Klaus Brockhaus, Nov 21 2010] a(n) = (13*(n mod 3)+7*(n+1 mod 3)+(n+2 mod 3))/9 (cf. forms of modular arithmetic of Paolo P. Lava, i.e., see A146094). [Bruno Berselli, Sep 27 2010] a(n) = 1 + 2*sgn(n mod 3). - Wesley Ivan Hurt, Jul 02 2016 a(n) = 3/gcd(n,3). - Wesley Ivan Hurt, Jul 11 2016 MAPLE seq(op([1, 3, 3]), n=0..50); # Wesley Ivan Hurt, Jul 02 2016 MATHEMATICA PadRight[{}, 120, {1, 3, 3}] (* or *) LinearRecurrence[{0, 0, 1}, {1, 3, 3}, 120] (* Harvey P. Dale, Apr 29 2015 *) PROG (MAGMA) [ n mod 3 eq 0 select 1 else 3: n in [0..104] ]; (MAGMA) &cat [[1, 3, 3]^^30]; // Wesley Ivan Hurt, Jul 02 2016 CROSSREFS Cf. A000012 (all 1's sequence), A010701 (all 3's sequence), A144437 (repeat 3, 3, 1), A154595 (repeat 1, 3, 3, -1, -3, -3), A168615, A168673, A047347 (congruent to {0, 1, 4} mod 7), A010684 (repeat 1, 3). Cf. A171419 (decimal expansion of (5+sqrt(65))/10). Cf. A146094. Sequence in context: A103585 A154595 A144437 * A220670 A264526 A138071 Adjacent sequences:  A169606 A169607 A169608 * A169610 A169611 A169612 KEYWORD easy,cofr,cons,nonn AUTHOR Klaus Brockhaus, Dec 03 2009 EXTENSIONS Keywords cofr, cons added by Klaus Brockhaus, Apr 20 2010 Minor edits, crossref added by Klaus Brockhaus, May 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 08:42 EDT 2019. Contains 325098 sequences. (Running on oeis4.)