login
Number of partitions of n such that the number of parts is divisible by the smallest part.
9

%I #31 Oct 18 2024 03:13:19

%S 1,1,2,4,6,8,12,17,25,34,48,64,87,114,151,198,258,332,428,546,695,879,

%T 1108,1388,1737,2159,2680,3312,4082,5009,6138,7492,9126,11081,13429,

%U 16228,19575,23547,28277,33879,40520,48354,57615,68509,81337,96388,114055

%N Number of partitions of n such that the number of parts is divisible by the smallest part.

%H Vaclav Kotesovec, <a href="/A168657/b168657.txt">Table of n, a(n) for n = 1..9464</a> (terms 1..1000 from Alois P. Heinz)

%F G.f.: Sum_{n>=1} Sum_{d|n} x^(n*d)/Product_{k=1..n-1}(1-x^k).

%F G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j^2)/Product_{k=1..i*j-1} (1-x^k). - _Seiichi Manyama_, Jan 21 2022

%F From _Vaclav Kotesovec_, Oct 17 2024: (Start)

%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 13*Pi / (2^(7/2) * 3^(3/2))) / sqrt(n)).

%F A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(7/2) * n^(3/2)). (End)

%p b:= proc(n, i, t) option remember;

%p `if`(n<1, 0, `if`(i=1, 1, `if`(i<1, 0,

%p `if`(irem(n, i)=0 and irem(t+n/i, i)=0, 1, 0)+

%p add(b(n-i*j, i-1, t+j), j=0..n/i))))

%p end:

%p a:= n-> b(n, n, 0):

%p seq(a(n), n=1..60); # _Alois P. Heinz_, May 24 2012

%t b[n_, i_, t_] := b[n, i, t] = If[n<1, 0, If[i==1, 1, If[i<1, 0, If [Mod[n, i]==0 && Mod[t+n/i, i]==0, 1, 0] + Sum[b[n-i*j, i-1, t+j], {j, 0, n/i}]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jul 01 2015, after _Alois P. Heinz_ *)

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, sqrtint(N\i), x^(i*j^2)/prod(k=1, i*j-1, 1-x^k)))) \\ _Seiichi Manyama_, Jan 21 2022

%Y Cf. A079501, A168655, A168656.

%K easy,nonn

%O 1,3

%A _Vladeta Jovovic_, Dec 02 2009