login
A168621
Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,k) = ((n - 1)! + 1)*binomial(n, k) for 1 <= k <= n - 1, n >= 2.
0
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 28, 42, 28, 1, 1, 125, 250, 250, 125, 1, 1, 726, 1815, 2420, 1815, 726, 1, 1, 5047, 15141, 25235, 25235, 15141, 5047, 1, 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1, 1, 362889, 1451556, 3386964, 5080446, 5080446, 3386964, 1451556, 362889, 1
OFFSET
0,5
COMMENTS
Row 0 is 1, and row n gives the coefficients in the expansion of (x + 1)^n + (n - 1)!*((x + 1)^n - x^n -1). - Franck Maminirina Ramaharo, Dec 22 2018
FORMULA
From Franck Maminirina Ramaharo, Dec 22 2018: (Start)
T(n,k) = A007318(n,k) + A219570(n,k) for 1 <= k <= n - 1, n >= 2.
E.g.f.: exp((1 + x)*y) + log((1 - y)*(1 - x*y)/(1 - (1 + x)*y)). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 28, 42, 28, 1;
1, 125, 250, 250, 125, 1;
1, 726, 1815, 2420, 1815, 726, 1;
1, 5047, 15141, 25235, 25235, 15141, 5047, 1;
1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1;
...
MATHEMATICA
p[x_, n_] := If[n == 0, 1, (x + 1)^n + (n - 1)!*((x + 1)^n - x^n - 1)];
Table[CoefficientList[p[x, n], x], {n, 0, 12}] // Flatten (* Franck Maminirina Ramaharo, Dec 22 2018 *)
PROG
(Maxima) T(n, k) := if k = 0 or k = n then 1 else ((n - 1)! + 1)*binomial(n, k)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 22 2018 */
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Dec 22 2018 (previous definition and examples were the same as A168620, but with different entries, as pointed out by R. J. Mathar, Oct 21 2012)
STATUS
approved