login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168546 Decimal expansion of the argument z in (0,Pi/2) for which the function log(cos(sin(x)))/log(sin(cos(x))) possesses the maximum in (0,Pi/2). 7
8, 4, 7, 0, 2, 5, 2, 6, 4, 0, 8, 1, 2, 5, 3, 3, 2, 2, 8, 1, 9, 7, 7, 5, 1, 1, 0, 2, 1, 6, 8, 9, 4, 2, 4, 3, 2, 4, 7, 1, 5, 2, 5, 0, 7, 4, 2, 9, 1, 8, 6, 5, 4, 2, 3, 7, 9, 6, 2, 1, 7, 1, 6, 8, 1, 7, 8, 1, 8, 9, 1, 2, 7, 3, 5, 9, 9, 4, 0, 4, 4, 3, 0, 7, 3, 4, 4, 9, 9, 3, 7, 6, 4, 0, 5, 8, 5, 2, 0, 3, 5, 4, 1, 5, 8, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

We have max{f(x): x in (0,Pi/2)} = f(z) = A215832 = 0.641019237..., where f(x) = log(cos(sin(x)))/log(sin(cos(x))). See also A215833.

REFERENCES

R. Witula, D. Jama, E. Hetmaniok, D. Slota, On some inequality of the trigonometric type, Zeszyty Naukowe Politechniki Slaskiej - Matematyka-Fizyka (Science Fascicle of Silesian Technical University - Math.-Phys.), 92 (2010), 83-92.

LINKS

Table of n, a(n) for n=0..105.

EXAMPLE

= 0.8470252640812533228197751102168942432471525...

MATHEMATICA

f[x_] := Log[Cos[Sin[x]]] / Log[Sin[Cos[x]]]; x /. FindRoot[f'[x] == 0, {x, 1}, WorkingPrecision -> 130] // RealDigits[#, 10, 126]& // First (* Jean-François Alcover, Feb 11 2013 *)

CROSSREFS

Cf. A215832, A215833, A215670, A215668, A216891.

Sequence in context: A090325 A090469 A322743 * A195346 A096427 A176453

Adjacent sequences:  A168543 A168544 A168545 * A168547 A168548 A168549

KEYWORD

nonn,cons

AUTHOR

Roman Witula, Aug 24 2012

EXTENSIONS

Terms corrected by Jean-François Alcover, Feb 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)