The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168491 a(n) = (-1)^n*Catalan(n). 10
 1, -1, 2, -5, 14, -42, 132, -429, 1430, -4862, 16796, -58786, 208012, -742900, 2674440, -9694845, 35357670, -129644790, 477638700, -1767263190, 6564120420, -24466267020, 91482563640, -343059613650, 1289904147324, -4861946401452, 18367353072152, -69533550916004 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Second inverse binomial transform of A001405. Hankel transform of this sequence gives A000012 = [1,1,1,1,1,1,1,...]. Also the expansion of real root of y+y^2=x, With offset 1, series reversion of x+x^2. - Robert G. Wilson v, Mar 07 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 FORMULA a(n) = (-1)^n * A000108(n). G.f.: (sqrt(1+4*x) - 1) / (2*x) = 2 / (sqrt(1+4*x) + 1). E.g.f.: exp(-2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 26 2012 (n+1)*a(n) +2*(2*n - 1)*a(n-1) = 0. - R. J. Mathar, Oct 06 2012 G.f.: 1 / (1 + x / (1 + x / (1 + x / ...))). - Michael Somos, Jan 03 2013 G.f.: 1/(x*Q(0)) - 1/x, where Q(k)= 1 - (4*k+1)*x/(k+1 - x*(2*k+2)*(4*k+3)/(2*x*(4*k+3) - (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013 G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+4*x) - 2*x*(1+4*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+4*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013 G.f.: G(0)/x - 1/x, where G(k)= k+1 - 2*x*(2*k+1) + 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013 EXAMPLE G.f. = 1 - x + 2*x^2 - 5*x^3 + 14*x^4 - 42*x^5 + 132*x^6 - 429*x^7 + ... MATHEMATICA CoefficientList[InverseSeries[Series[y + y^2, {y, 0, 28}], x]/x, x] (* Robert G. Wilson v, Mar 07 2011 *) a[ n_] := If[ n < 0, 0, (-1)^n CatalanNumber[n]]; (* Michael Somos, Nov 22 2014 *) Table[(-1)^n*CatalanNumber[n], {n, 0, 50] (* G. C. Greubel, Jul 23 2016 *) PROG (PARI) a(n)=(-1)^n*binomial(2*n, n)/(n+1); \\ Joerg Arndt, May 15 2013 (MAGMA) [(-1)^n*Catalan(n): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014 CROSSREFS Sequence in context: A287974 A115140 A120588 * A000108 A057413 A126567 Adjacent sequences:  A168488 A168489 A168490 * A168492 A168493 A168494 KEYWORD sign,less AUTHOR Philippe Deléham, Nov 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 10:48 EST 2020. Contains 338612 sequences. (Running on oeis4.)