login
Numbers that are congruent to {2, 5} mod 11.
1

%I #34 Nov 04 2022 20:14:45

%S 2,5,13,16,24,27,35,38,46,49,57,60,68,71,79,82,90,93,101,104,112,115,

%T 123,126,134,137,145,148,156,159,167,170,178,181,189,192,200,203,211,

%U 214,222,225,233,236,244,247,255,258,266,269,277,280,288,291,299,302,310

%N Numbers that are congruent to {2, 5} mod 11.

%H David Lovler, <a href="/A168486/b168486.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi)

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 11*n - a(n-1) - 4 with n>1, a(1)=2.

%F From _R. J. Mathar_, Mar 21 2010, Jul 07 2015: (Start)

%F a(n) = (22*n - 5*(-1)^n - 19)/4.

%F a(n) = a(n-1) + a(n-2) - a(n-3).

%F G.f.: x*(2 + 3*x + 6*x^2)/ ((1+x) * (x-1)^2). (End)

%F E.g.f.: (1/2)*(12 + (11*x - 12)*cosh(x) + (11*x - 7)*sinh(x)). - _G. C. Greubel_, Jul 23 2016

%F E.g.f.: (12 + (11*x -12)*exp(x) + 5*sinh(x))/2. - _David Lovler_, Jul 16 2022

%t Select[Range[310],MemberQ[{2,5},Mod[#,11]]&] (* _Ray Chandler_, Jul 07 2015 *)

%t LinearRecurrence[{1,1,-1},{2,5,13},57] (* _Ray Chandler_, Jul 07 2015 *)

%t Rest[CoefficientList[Series[x*(2+3*x+6*x^2)/((1+x)*(x-1)^2),{x,0,57}],x] ] (* _Ray Chandler_, Jul 07 2015 *)

%o (PARI) a(n) = (22*n - 5*(-1)^n - 19)/4 \\ _David Lovler_, Jul 16 2022

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Nov 27 2009

%E Leading 2 added by _R. J. Mathar_, Jul 07 2015