login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168417 Primes q for which 1 concatenated with q^3 (A168327) is prime. 9
3, 13, 103, 109, 139, 163, 181, 211, 379, 457, 463, 1021, 1087, 1123, 1201, 1249, 1303, 1381, 1579, 1597, 1609, 1699, 1861, 1873, 1987, 2011, 2029, 2053, 2143, 2221, 2281, 2341, 2473, 2503, 2557, 2731, 2857, 3061, 3067, 3217, 3253, 3271, 3319, 3331, 3517 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It is conjectured that this sequence is infinite.

REFERENCES

Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980

Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005

LINKS

Table of n, a(n) for n=1..45.

EXAMPLE

(1) "1 3^3"=10^2+3^3=127=prime(31) gives a(1)=3=prime(2)

(2) "1 103^3"=10^7+103^3=11092727=prime(732258) gives a(3)=103=prime(27)

MATHEMATICA

Select[Prime[Range[500]], PrimeQ[FromDigits[Join[{1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Jan 21 2013 *)

CROSSREFS

A168147 Primes of the form p = 1 + 10*n^3 for a natural number n

A168327 Primes of concatenated form p= "1 n^3"

A168375 Natural numbers n for which the concatenation p= "1 n^3" is prime

Sequence in context: A267196 A268215 A323687 * A240167 A127004 A068168

Adjacent sequences:  A168414 A168415 A168416 * A168418 A168419 A168420

KEYWORD

nonn,base

AUTHOR

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 25 2009

EXTENSIONS

Edited and extended by Charles R Greathouse IV, Apr 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 06:25 EDT 2020. Contains 336422 sequences. (Running on oeis4.)