|
|
A168413
|
|
a(n) = 9*n - a(n-1) - 5, with a(1)=2.
|
|
1
|
|
|
2, 11, 11, 20, 20, 29, 29, 38, 38, 47, 47, 56, 56, 65, 65, 74, 74, 83, 83, 92, 92, 101, 101, 110, 110, 119, 119, 128, 128, 137, 137, 146, 146, 155, 155, 164, 164, 173, 173, 182, 182, 191, 191, 200, 200, 209, 209, 218, 218, 227, 227, 236, 236, 245, 245, 254, 254
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
|
|
FORMULA
|
a(n) = (18*n + 9*(-1)^n - 1)/4, with n>=1. - Paolo P. Lava, Nov 27 2009
G.f.: x*(2 + 9*x - 2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2011
E.g.f.: (1/4)*(9 - 8*exp(x) + (18*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016
|
|
EXAMPLE
|
For n=2, a(2)=9*2-2-5=11; n=3, a(3)=9*3-11-5=11; n=4, a(4)=9*4-11-5=20.
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1, -1}, {2, 11, 11}, 50] (* G. C. Greubel, Jul 22 2016 *)
|
|
PROG
|
(MAGMA) [-(1/4)+(9/4)*(-1)^n+(9/2)*n: n in [1..60]]
|
|
CROSSREFS
|
Cf. A017186.
Sequence in context: A027828 A106371 A145523 * A265561 A265545 A153705
Adjacent sequences: A168410 A168411 A168412 * A168414 A168415 A168416
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Nov 25 2009
|
|
STATUS
|
approved
|
|
|
|