login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168411 a(n) = 7 + 9*floor((n-1)/2). 1
7, 7, 16, 16, 25, 25, 34, 34, 43, 43, 52, 52, 61, 61, 70, 70, 79, 79, 88, 88, 97, 97, 106, 106, 115, 115, 124, 124, 133, 133, 142, 142, 151, 151, 160, 160, 169, 169, 178, 178, 187, 187, 196, 196, 205, 205, 214, 214, 223, 223, 232, 232, 241, 241, 250, 250, 259 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = 9*n - a(n-1) - 4, with n>1, a(1)=7.

a(n) = (1 - 9*(-1)^n + 18*n)/4. - Paolo P. Lava, Nov 27 2009

G.f.:  x*(7 + 2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 10 2011

a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013

E.g.f.: (1/4)*(-9 + 8*exp(x) + (18*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016

MATHEMATICA

Table[7 + 9 Floor[(n - 1)/2], {n, 70}] (* or *) CoefficientList[Series[(7 + 2 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

PROG

(MAGMA) [7+9*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013

CROSSREFS

Cf. A017245.

Sequence in context: A168379 A179886 A214829 * A120682 A152910 A198439

Adjacent sequences:  A168408 A168409 A168410 * A168412 A168413 A168414

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Nov 25 2009

EXTENSIONS

New definition by Vincenzo Librandi, Sep 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.