login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168392 a(n) = 5 + 8*floor((n-1)/2). 2

%I

%S 5,5,13,13,21,21,29,29,37,37,45,45,53,53,61,61,69,69,77,77,85,85,93,

%T 93,101,101,109,109,117,117,125,125,133,133,141,141,149,149,157,157,

%U 165,165,173,173,181,181,189,189,197,197,205,205,213,213,221,221,229,229

%N a(n) = 5 + 8*floor((n-1)/2).

%H Vincenzo Librandi, <a href="/A168392/b168392.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 8*n - a(n-1) - 6 with n>1, a(1)=5.

%F a(n) = 4*n - 2*(-1)^n - 1. - _Paolo P. Lava_, Nov 27 2009

%F a(1) = 5, a(2)=5, a(3)=13; for n>3, a(n) = a(n-1) +a(n-2) -a(n-3). - _Harvey P. Dale_, Jan 27 2013

%F G.f.: x*(5 + 3*x^2)/((1+x)*(x-1)^2). - _Vincenzo Librandi_, Sep 18 2013

%F E.g.f.: (-2 + 3*exp(x) + (4*x - 1)*exp(2*x))*exp(-x). - _G. C. Greubel_, Jul 19 2016

%F a(n) = A168379(n) - 2. - _Filip Zaludek_, Nov 01 2016

%t RecurrenceTable[{a[1]==5,a[n]==8n-a[n-1]-6},a,{n,80}] (* or *) LinearRecurrence[{1,1,-1},{5,5,13},80] (* or *) With[{c= LinearRecurrence[ {2,-1},{5,13},40]}, Riffle[c,c]] (* _Harvey P. Dale_, Jan 27 2013 *)

%t Table[5 + 8 Floor[(n - 1)/2], {n, 60}] (* _Bruno Berselli_, Sep 18 2013 *)

%t CoefficientList[Series[(5 + 3 x^2)/((1 + x) (x - 1)^2),{x, 0, 70}], x] (* _Vincenzo Librandi_, Sep 18 2013 *)

%o (MAGMA) [5+8*Floor((n-1)/2): n in [1..70]]; // _Vincenzo Librandi_, Sep 18 2013

%Y Cf. A004770, A168379.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Nov 24 2009

%E New definition by _Vincenzo Librandi_, Sep 18 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 16:26 EDT 2019. Contains 324234 sequences. (Running on oeis4.)