login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168361 Period 2: repeat 2, -1. 5
2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Interleaving of A007395 and -A000012.

Binomial transform of 2 followed by a signed version of A007283; also binomial transform of a signed version of A042950.

Second binomial transform of a signed version of A007051 without initial term 1.

Inverse binomial transform of 2 followed by A000079.

A028242 without first two terms gives partial sums.

LINKS

Table of n, a(n) for n=1..84.

Index entries for linear recurrences with constant coefficients, signature (0,1).

FORMULA

a(n) = (1 - 3*(-1)^n)/2.

a(n) = -a(n-1) + 1 for n > 1; a(1) = 2.

a(n) = a(n-2) for n > 2; a(1) = 2, a(2) = -1.

a(n+1) - a(n) = 3*(-1)^n.

G.f.: x*(2 - x)/((1-x)*(1+x)).

E.g.f.: (1/2)*(-1 + exp(x))*(3 + exp(x))*exp(-x). - G. C. Greubel, Jul 19 2016

MATHEMATICA

PadRight[{}, 120, {2, -1}] (* Harvey P. Dale, Jan 04 2015 *)

Table[(1 - 3 (-1)^n)/2, {n, 120}] (* or *)

Rest@ CoefficientList[Series[x (2 - x)/((1 - x) (1 + x)), {x, 0, 120}], x] (* Michael De Vlieger, Jul 19 2016 *)

PROG

(MAGMA) &cat[ [2, -1]: n in [1..42] ];

[ n eq 1 select 2 else -Self(n-1)+1: n in [1..84] ];

(PARI) a(n)=2-n%2*3 \\ Charles R Greathouse IV, Jul 13 2016

(MAGMA) &cat[[2, -1]^^40]; // Vincenzo Librandi, Jul 20 3016

CROSSREFS

Cf. A168330 (repeat 3, -2), A007395 (all 2's sequence), A000012 (all 1's sequence), (A007283 3*2^n), A042950, A007051 ((3^n+1)/2), A000079 (powers of 2), A028242 (follow n+1 by n).

Sequence in context: A280193 A228826 A288699 * A107393 A000034 A040001

Adjacent sequences:  A168358 A168359 A168360 * A168362 A168363 A168364

KEYWORD

sign,easy

AUTHOR

Klaus Brockhaus, Nov 23 2009

EXTENSIONS

G.f. adapted to the offset by Bruno Berselli, Apr 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 07:20 EDT 2018. Contains 316520 sequences. (Running on oeis4.)