This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168330 Period 2: repeat 3, -2. 1
 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Interleaving of A010701 and -A007395. Binomial transform of 3 followed by a signed version of A020714. Inverse binomial transform of 3 followed by A000079. A084964 without first two terms gives partial sums. LINKS Index entries for linear recurrences with constant coefficients, signature (0,1). FORMULA a(n) = (-5*(-1)^n + 1)/2. a(n+1) - a(n) = 5*(-1)^n. a(n) = -a(n-1) + 1 for n > 1; a(1) = 3. a(n) = a(n-2) for n > 2; a(1) = 3, a(2) = -2. G.f.: x*(3 - 2*x)/((1-x)*(1+x)). a(n) = A049071(n). - R. J. Mathar, Nov 25 2009 E.g.f.: (1/2)*(1 - exp(-x))*(5 + exp(x)). - G. C. Greubel, Jul 18 2016 MATHEMATICA LinearRecurrence[{0, 1}, {3, -2}, 25] (* G. C. Greubel, Jul 18 2016 *) PadRight[{}, 120, {3, -2}] (* Harvey P. Dale, Oct 05 2016 *) PROG (MAGMA) &cat[[3, -2]: n in [1..42]]; (MAGMA) [n eq 1 select 3 else -Self(n-1)+1:n in [1..84]]; (MAGMA) [(-5*(-1)^n+1)/2: n in [1..100]]; // Vincenzo Librandi, Jul 19 2016 (PARI) a(n)=3-n%2*5 \\ Charles R Greathouse IV, Jul 13 2016 CROSSREFS Cf. A168309 (repeat 4, -3), A010701 (all 3's sequence), A007395 (all 2's sequence), A010716 (all 5's sequence), A020714 (5*2^n), A000079 (powers of 2), A084964 (follow n+2 by n). Sequence in context: A095206 A308006 A049071 * A176059 A262785 A264843 Adjacent sequences:  A168327 A168328 A168329 * A168331 A168332 A168333 KEYWORD sign,easy AUTHOR Klaus Brockhaus, Nov 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 14:44 EDT 2019. Contains 325106 sequences. (Running on oeis4.)