login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168309 Period 2: repeat 4,-3. 3
4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3, 4, -3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Interleaving of A010709 and -3*A000012.

Binomial transform of 4 followed by a signed version of A005009.

Inverse binomial transform of 4 followed by A000079.

a(n+1) - a(n) = 7*(-1)^n.

A168230 without initial term 0 gives partial sums.

Nonsimple continued fraction expansion of 2+2*sqrt(2/3) = 3.6329931618... - R. J. Mathar, Mar 08 2012

LINKS

Table of n, a(n) for n=1..84.

Index entries for linear recurrences with constant coefficients, signature (0,1).

FORMULA

a(n) = (1 - 7*(-1)^n)/2.

a(n) = -a(n-1) + 1 for n > 1; a(1) = 4.

a(n) = a(n-2) for n > 2; a(1) = 4, a(2) = -3.

G.f.: x*(4 - 3*x)/((1-x)*(1+x)).

E.g.f.: (1/2)*(-1 + exp(x))*(7 + exp(x))*exp(-x). - G. C. Greubel, Jul 17 2016

MATHEMATICA

LinearRecurrence[{0, 1}, {4, -3}, 50] (* or *) Table[(1 - 7*(-1)^n)/2, {n, 0, 25}] (* G. C. Greubel, Jul 17 2016 *)

PadRight[{}, 120, {4, -3}] (* Harvey P. Dale, Oct 20 2018 *)

PROG

(MAGMA) &cat[ [4, -3]: n in [1..42] ];

[ n eq 1 select 4 else -Self(n-1)+1: n in [1..84] ];

CROSSREFS

Cf. A010709 (all 4's sequence), A000012 (all 1's sequence), A010727 (all 7's sequence), A168230, A005009 (7*2^n), A000079 (powers of 2).

Sequence in context: A106055 A171783 A251767 * A103947 A178038 A241928

Adjacent sequences:  A168306 A168307 A168308 * A168310 A168311 A168312

KEYWORD

sign,easy

AUTHOR

Klaus Brockhaus, Nov 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)